Company News

UV LED curing field

Curing inks and coatings with ultraviolet (UV) radiation has long been SOP for many printers, especially those producing packaging and labels. But, as well established as it is, conventional UV curing has had persistent drawbacks: high operating temperatures and energy requirements; ozone emissions; safety concerns about skin and eye exposure; and regulatory issues stemming from the presence of mercury in standard UV lamps.

Although conventional UV curing remains the norm for most kinds of printing, an alternative to it is making rapid technical advancements and is starting to attract the kind of attention that leads to mainstream adoption. This is curing with UV radiation generated by light emitting diodes, or UV LED for short. Its proponents say the technology works well with all printing processes and may even become the curing method of choice in some applications that now belong to conventional UV.

On October 28 and 29, more than 200 users and sellers of UV LED solutions came together in Rome, NY, for a conference on its progress in printing and other industrial market segments. The event, the first of its kind, was hosted by RadTech International, a trade association that promotes the use and development of UV and EB (electron beam) curing systems. The conference also featured a tour of the Smart Lighting Energy Research Center (ERC) at nearby Rensselaer Polytechnic Institute, an incubator for LED and other advanced illumination technologies.

The general focus was on UV LED for print and packaging, but also noted was its increasing importance in non-print uses such as outdoor displays, plastic cards, automotive interiors, wallpaper, flooring, furniture and fixtures, plumbing, and ceiling tiles. Research from RadTech indicates that sales in some of these UV and EB applications are growing by as much as 7% annually.

The scientific difference between UV radiation from LEDs and conventional, mercury-based lamps is in wavelength. The spectral output of UV LED lies in a narrow band of wavelengths from about 355 to 415 nanometers, just below and slightly overlapping with the spectrum of visible light. (Wavelengths from conventional UV units are more broadly distributed and produce more types of UV radiation.)

With their microchip-like arrays of miniaturized diodes, UV-emitting LED units bear little resemblance to the designs of the mercury-using arc lamps and microwave lamps that are the fixtures of conventional UV. As one conference speaker, Jennifer Heathcote (Phoseon Technology), put it, “the construction and operation of a UV LED curing system has more in common with a smart phone and a tablet” than with either of the conventional sources.

In practical terms, said Heathcote and other experts, UV LED systems set themselves apart from the other methods by being longer lived; more consistent in UV output; more energy efficient; simpler to work with because of their fast on/off operation; cooler in curing and therefore easier on heat-sensitive substrates; and free of ozone and mercury (the latter coming under increasing regulatory pressure, especially in Europe).

As an emerging technology, UV LED has had to deal with technical hurdles and market resistance. A panel of representatives from UV LED solutions vendors, moderated by WhatTheyThink, discussed the extent to which the problems and objections have been set aside.

Because of technical progress, they said, no longer valid are claims that UV LED curing units are underpowered or that they are too costly to use. The panelists noted that UV LED has been successfully installed on inkjet, flexo, screen, and offset printing systems and that with the help of ongoing R&D, the units will continue to become less expensive and more capable.

According to a speaker in another part of the program, there are now more than 60 suppliers of UV LED sources to meet a growing range of applications and processes. Remaining an issue, however, is the still-limited supply of inks, coatings, and adhesives that have been formulated to work with UV LED systems, which have different curing characteristics from those of conventional systems.

Hits:  UpdateTime:2016-10-25 15:57:07  【Printing】  【Close

News

Contact Us

Address:Address:Office/ Factory address: 2/F, Tower B, Sanhe international science and technology Building, Lai Wu Shan New Village ,Da Lang Road,Long Hua District, ShenZhen, Guang Dong Province, China.
Zip:518109  
Tel:+86-755- 27381112          
Fax:+86-755-22718753  
E-mail:info@height-led.com  
Mobiled Phone:
    Mandi:   +86-18924589491
   Jerry:     +86-15112366475 
    Duke:     +86-13192028497
 
Skype:
   HTLD led uv curing-Mandi
   HTLD led uv curing-Jerry  
   HTLD led uv curing-Duke    
Website:www.height-led.com/en